Wave propagation simulation in a linear viscoelastic medium

نویسندگان

  • Jose M. Carcione
  • Dan Kosloff
  • Ronnie Kosloff
چکیده

A new formulation for wave propagation in an anelastic medium is developed. The phenomenological theory of linear viscoelasticity provides the basis for describing the attenuation and dispersion of seismic waves. The concept of a spectrum of relaxation mechanisms represents a convenient description of the constitutive relation of linear viscoelastic solids; however, Boltzmann's superposition principle does not have a straightforward implementation in time-domain wave propagation methods. This problem is avoided by the introduction of memory variables which circumvent the convolutional relation between stress and strain. The formulae governing wave propagation are recast as a first-order differential equation in time, in the vector represented by the displacements and memory variables. The problem is solved numerically and tested against. the solution of wave propagation in a homogeneous viscoelastic medium, obtained by using the correspondence principle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rheological Response and Validity of Viscoelastic Model Through Propagation of Harmonic Wave in Non-Homogeneous Viscoelastic Rods

This study is concerned to check the validity and applicability of a five parameter viscoelastic model for harmonic wave propagating in the non-homogeneous viscoelastic rods of varying density. The constitutive relation for five parameter model is first developed and validity of these relations is checked. The non-homogeneous viscoelastic rods are assumed to be initially unstressed and at rest....

متن کامل

Wave propagation theory in offshore applications

A frequency-wavenumber-domain formulation is presented in this paper for calculation of the Green's functions and wave propagation modes in a stratified fluid body underlain by a layered viscoelastic soil medium. The Green's functions define the solid and fluid displacements and fluid pressures due to uniform disk loads acting in either the soil or fluid media. The solution is in the frequency ...

متن کامل

Influence of Heterogeneity on Rayleigh Wave Propagation in an Incompressible Medium Bonded Between Two Half-Spaces

The present investigation deals with the propagation of Rayleigh wave in an incompressible medium bonded between two half-spaces. Variation in elastic parameters of the layer is taken linear form. The solution for layer and half-space are obtained analytically. Frequency equation for Rayleigh waves has been obtained. It is observed that the heterogeneity and width of the incompressible medium h...

متن کامل

A fourth-order accurate finite-difference program for the simulation of SH-wave propagation in het- erogeneous viscoelastic medium

This article presents a staggered grid time-domain finite-difference (FD) program for the simulation of sH-wave propagation in a viscoelastic heterogeneous medium. The incorporation of realistic damping in FD program is based on a rheological model widely known as generalized maxwell body (gmB-EK). The accuracy of implementation of realistic damping is validated by comparing the numerically com...

متن کامل

Wave Propagation Approach to Fluid Filled Submerged Visco-Elastic Finite Cylindrical Shells

Multi-layer orthotropic finite cylindrical shells with a viscoelastic core in contact with fluids are gaining increasing importance in engineering. Vibrational control of these structures is essential at higher modes. In this study, an extended version of the wave propagation approach using first-order shear deformation theory of shell motion is employed to examine the free vibration of damped ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010